

PERIODICITY

Part-A (Periodic Table)

IN

FREE Download Study Package from website: www.tekoclasses.com

			Part-A (Periodic la	idle)
IN	TRODUC	TION :		
	(i) Pro	attempts were made to oust Hypothesis other Meyer's curve	classify the known elements(ii) Doberniers Triad law(v) Mendeleev Periodic la	
PF		LAW (1869) : hysical and chemical pro	operties of elements are perio	dic functions of their atomic weight .
Μ		PERIODIC LAW : hysical and chemical pro	operties of elements are perio	dic functions of their atomic number .
L			TABLE : [BOHR'S TABlaw and Bohr Burry Scheme	-
Gr Gr To	roup A : roup B : tal 16 Gr	s and p block element d and f block element oups	NT INTO GROUPS AND I as, representative elements. I s, transition and inner transiti est, long, longest and incomp	A to VII A and O group. on elements IB to VII B and VIII group
	LASSIFIC - block : (i) (iii)	ATION OF ELEMP configuration ns ¹⁻² two groups IA or 1		BLOCK ELEMENTS : st e ⁻ enters in s orbital
р-	– block : (i) (iii)	configuration n s ² n six groups III A, IV		st e ⁻ enters in p orbital o or 13, 14, 15, 16, 17, 18
d -	- block : (i) (ii) (iv) (v)	their two outermost sl	d^{2} (n-1) d^{1-10} (ii) lashell are incomplete B, V B, VI B, VII B, VII , 10), 11, 12.	st e enters in d orbital (Triad), IB, IIB or
f-	- block : [(i) (ii) (iii)	last e ⁻ enters in f c	$(n-1)d^{0-1}(n-2)f^{1-14}$ orbital unides & 5 f Actinides	
ES			NELEMENT FROM ITS	ELECTRONIC CONFIGURATION ck.
	Period Period Group	d no. = valence shell, fo	ence shell present in the cont r 'd' block = shell + 1, for f t valence shell electron (A)	figuration. Also for s and p block eleme block = shell + 2 and so on.

[()) Use these carefully while locating the position.]

COMMONLY ASKED PROPERTIES :

Atomic Volume : Volume occupied by one gm atom of an element . 1.

> Atomic weight Atomic volume =

density

d

Lower atomic volume leads to higher density, increased hardness higher melting point, boilin point, less malleability & ductility.

Atomic Radius : Problem in calculating actual size of atom and hence distance between nuclei i 2. calculated giving rise to three type of radii for atoms.

(a) *Covalent radius*:
$$C_r = \frac{d}{2}$$
 $C_r < \text{actual atom size [Slight difference]}$

[Used for H₂, Cl₂ and such molecules]

(b) *Metallic Radius*:
$$M_r = \frac{d}{2}$$
 $M_r > actual size [Slight difference]$

[Used for metals]

- Vanderwaal radius : $r_r >>$ actual size [very large difference] (c) In general $V_R > M_r > C_R$
- Ionic Radius: A cation is smaller than parent atom. An anion is larger than parent atom. (d)

FACTORS AFFECTING ATOMIC SIZE :

- (a) 'n' increase size increases
- Z_{eff} increase size decrease $[Z_{eff} = Z \sigma]$ (b)
- Type of measurement of radii. (c) Calculation of Z_{eff}

$$Z_{eff} = \sqrt{\frac{En^2}{1312}}$$
 where E is I.E. in kJ/mole ; $Z_{eff} = \sqrt{\frac{E \times n^2}{13.6}}$ E is I.E. in eV per atom.

Calculated by Slaters rule. or

SLATER'S RULE:

```
For calculating \sigma on a (s or p) block (other than on 1s)
(a)
        Rule-1: Each (ns, nP) electron contribute to a screening factor of 0.35.
        Rule-2: Each (n-1)^{\text{th}} shell electron contribute to a screening factor of 0.85.
        Rule-3: Each (n-2)^{nd} and deeper shell electron contribute to a screening factor of 1.
        [* On 1s, the screening factor due to other electron is taken as 0.3]
(b)
        For calculating \sigma on (d or f) block.
        Rule-1 : Each screening causing electron (d or f) of same shell has factor of 0.35.
        Rule-2: Each electron other than Rule-1 have screening factor of 1.
```

General Trend :

Along a period, size decrease ['n' constant, Z_{eff}] Along a group, size increase ['n' increasing, Z_{eff} constant]

Page 5 of 16 CLASSIFICATIONS (M.P.) 0 98930 58881, BHOPAL, TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000,

Exceptions :

- (1) Noble gases have largest atomic sizes [Vander waal radii]. However, their covalent radii are smaller *e.g.* Xe.
- (2) Size of Ga and Al are same, $[Z_{eff} increasing]$

ISOELECTRONIC SPECIES [Size depends upon Z, more Z less size]:

(i)	$S^{2-}, Cl^-, K^+, Ca^{2+}, Sc^{2+}$	(ii)	SO_3 , NO_3^- , CO_3^{2-} , $COCl_2$
(iii)	N ₂ , CO, CN ⁻	(iv)	NH_3 , H_3O^+
(v)	H ⁻ , He, Li ⁺	(vi)	CH_4^{+} , NH_4^{+}
-	NCS ⁻ , CS ₂	(viii)	$\frac{\text{radius of cation}}{\text{radius of anion}} = \frac{Z_{\text{eff}} \text{ of Anion}}{Z_{\text{eff}} \text{ of Cation}}$
		1 1	1

[(0,0) Check out for size for an isoelectronic noble gas.]

IONISATION ENERGY:

Amount of energy required to remove the most loosely bounded electron from an isolated gaseous atom. Units : $kJ mol^{-1}$, $k cal mol^{-1}$, eV per atom.

Ionisation is endothermic (endoergic) i.e. requires energy hence

 ΔH is +ve

 $\begin{array}{c} M + \text{Energy} (\text{IE}_1) \longrightarrow M^+ + e^- \\ M \longrightarrow M^+ + e^- \qquad \Delta H = \text{IE}_1 \\ M^+ \longrightarrow M^{+2} + e^- \qquad \Delta H = \text{IE}_2 \\ M^{+2} \longrightarrow M^{+3} + e^- \qquad \Delta H = \text{IE}_3 \end{array}$

 $IE_3 > IE_2 > IE_1$ always

FACTORS AFFECTING IONISATION ENERGY :

- (1) Atomic size : Varies inversely
- (2) Screening effect : varies inversely
- (3) Nuclear charge : varies directly
- (4) Sp Elect. config of outermost electron (half filled / fully filled)
- (5) Type of orbital involved in Ionisation : s > p > d > f.

Half fillness and full fillness of inner orbitals. [affects d block and f block trends]

General Trend: Along period I.E. increases [with some exception] $[Z_{eff}^{\uparrow}]$

Along a group I.E. decrease [Z_{eff} constant, n \uparrow]

Exception :

- (1) Along a period, half filled and fully filled have higher I.E. e.g. Be > B and N > O.
- (2) along a group, Ga > Al

PROPERTIES AFFECTED BY IONISATION ENERGY:

- (1) Metallic character
- (2) Tending to stay in which state A^{+1} . A^{+2} or A^{+3}
- (3) Other properties based on (1)

ELECTRON AFFINITY :

Amount of energy released when an electron is added to an isolated gaseous atom. *Units* : $k J mol^{-1}$, $k Cal mol^{-1}$ and eV per atom.

Addition of electron results in release of energy in most of the cases but 2^{nd} E. A. is always energy required. The sum of EA₁ & EA₂ is energy required.

EA
$$\alpha \frac{1}{\text{atomic size}} \alpha Z_{\text{eff}}$$
. Cl has the highest E.A.

ELECTRON GAIN ENTHALPY:

TRON GAIN ENTHALPY : When expressed in terms of enthalpy change (Δ H) then it is termed as E.G.E. Remember that Δ H = - ve for exothermic change. For EA₁, energy is released $\therefore \Delta$ H_{EA1} = - ve For EA₂, onwards is required $\therefore \Delta$ H_{EA2} = + ve EA₁ + EA₂, energy is always required. **ORS AFFECTING ELECTRON AFFINITY :** *Atomic size :* varies inversely *Nuclear change :* varies directly Sp E.C. of half filled and fully filled shells

FACTORS AFFECTING ELECTRON AFFINITY :

- (1)
- (2)
- (3)Sp E.C. of half filled and fully filled shells.

General Trend: Along a period, electron affinity increases [with exception] as Z_{eff} \uparrow .

Along a group, electron affinity decreases after 3rd period. Between 2nd and 3rd period in p block electron affinity of 2nd period is lesser due to high electron density.

Exception :

- A fully filled and half filled which have low values or even sometimes energy is required rather than getting (1)released.
- 2^{nd} period has lower value than 3^{rd} owing to repulsion between electrons. (2)

ELECTRO NEGATIVITY : [Properties of an atom in a molecule]

F has highest. Decreasing order \rightarrow F > O > Cl = N > Br > S = C > I > H. **Pauling Scale**

$$X_A - X_B = 0.208 \sqrt{\Delta}$$
 E in kcal/mol
 $\Delta = E_{1,2} - (E_{1,2} + x E_{2,2} - p)^{1/2}$

Mulliken's Scale :
$$X_A = \frac{I_p + E_A}{2}$$
 (ev)

Mulliken's values of EN are about 2.8 times as large as Pauling .

Allred-Rochows: $X_A = \frac{0.359 Z_{eff}}{2} + 0.744$

FACTOR AFFECTING ELECTRO NEGATIVITY :

- Nuclear attraction : varies directly (1)
- (2)Atomic radius : varies inversely
- (3)Change on ions: More positive charge more electronegativity and more -ve change less electronegativity
- Hybridisation : to be discussed later in bonding. (4)

General Trends : Along a period, electronegativity increases

Along a group, electronegativity decreases

Exceptions : None noteworthy.

FREE Download Study Package from website: www.tekoclasses.com FACTORS DEPENDENT ON ELECTRO NEGATIVITY :

- (1)% ionic character varies directly.
- (2)Strength of bond varies directly.
- (3)B.L. : varies inversely.
- Nature of hydrides (4)
- Nature of hydroxide. (5)

MISCELLANEOUS CHEMICAL PROPERTIES :

1. Periodicity of hydra acids :

- Acidic character of hydra acid increases from left to right in a period. (a)
- (b) Acidic character of hydra acid increases from top to bottom in a group.

 (a) (b) (a) 	 Periodicity of oxy acids : Acidic character of oxy acid increases from left in a period. Acidic character of oxy acid decreases from top to bottom in a group. Periodicity of nature of oxide : On moving from left to right in a period acidic nature of oxide generally increases. 	Page 7 of 16 CLASSIFICATIONS
(b)	e.g. $CO_2 < P_2O_3 < SO_2 < CIO_2$ On moving from top to bottom in a group acidic nature of oxide generally decreases.	:7 of 16 CL
4. (a) (b)	Hydration energy decreases along a group.	(M.P.) Page
TREN	NDS IN PHYSICAL PROPERTIES : Physical properties are mostly dependent on. Atomic weight and so not regular trend. Mark out exception in the graph and think out of the reasons?	
SOM 1.	E COMMONLY USED TERMS : Noble Gases : Element of group 18 are called noble gases. These are also called as inert gases because their outermost ns and np orbitals are completely filled (except He and 1s ²) and these gaseous are non-	58881,
2.	reactive in nature under ordinary conditions. Representative elements : All the s and p block elements are known as representative elements except zero group.	, 0 98
3.	Transition elements : All the d-block elements (except IIB group) are called transition element. It	000 00
4.	<i>Inner transition elements :</i> All the f-block elements or 4f and 5f block elements are called inner transition element. Total number of these elements is 28. They lie in IIIB and placed at the bottom of periodic table. <i>Typical elements :</i> Elements second and third period are known as typical elements.	l: (0755)- 32
6.	Diagonal relationship : Properties of elements of second period resemble with the element of third period. These resembled properties between two periods or this type of relation between two periods	Sir)
	IA IIA IIIA IVA 2nd period Li Be B C	Director : SUHAG R. KARIYA (S.
	3rd period Ba Mg Al Si	R. KAF
	Increase your I bank	SUHAG
(i)	Resemblance between Li and Mg :	1
(a)) Unlike the other members of the group, lithium reacts with N_2 to form a nitride in the same way as magnesium does.	Directo
(b) (c)	 Lithium hydroxide, carbonate and nitrate decomposes on heating to give Li₂O as like Mg but other alkali hydroxides and carbonates are unchanged on heating where as the nitrate decompose to give nitrite. Lithium hydroxide carbonate and fluoride are much soluble than the corresponding sodium or potassium 	۰.

(c) Lithium hydroxide carbonate and fluoride are much soluble than the corresponding sodium or potassium compounds. The solubilities are comparable to those of corresponding magnesium compound.

FREE Download Study Package from website: www.tekoclasses.com

(ii) Resemblance between Be and Al :

- (a) The ionic radius of Be^{2+} is nearly same as that for the Al^{3+} .
- (b) Like aluminium, beryllium is not readily attacked by acids because of the pressure of an oxide film.
- (c) Beryllium dissolved in alkali to give the beryllate ion $[B(OH)_4]^2$ just as aluminium does to give $(Al(OH)_6)^2$
- (d) The oxides BeO and Al₂O₃ are hard high melting insoluble solids. The oxides as well as their hydroxides amphoteric and dissolve in sodium hydroxide solution.
- (e) Beryllium and aluminium from fluoro complex anion, BeF_4^{2-} and AlF_6^{3-} in solution, the other group II metals do not form stable fluoro complexes in solution.
- (f) Beryllium chloride (BeCl₂) is essentially covalent and has a bridged polymeric structure just as aluminium trichloride is covalent forming a bridged dimer, Al₂Cl₆. Both the chlorides are soluble in organic solvent and are strong Lewis acid. (M.P.)

(iii) **Resemblance between B and Si:**

- (a) Boron and silicon form numerous hydride which spontaneously catch fire on exposure to air and are easily hydrolysed.
- (b) Boron halide like silicon halides hydrolysed by water. Aluminium halides are only partially hydrolysed by
- water. (c) Boron forms binary compounds with several metals known as borides just as silicon forms metal silicides some of the borides and silicides under go hydrolysis to yield boron and silicon respectively. (d) B_2O_3 and SiO_2 are acidic in nature, Borates and silicates have tetrahedral BO_4 and SiO_4 structural units **8**
- respectively. Boro silicates are known in which form can replace silicon in three dimensional lattice. However boron can also form planer BO₃ unit.
- (e) Both B and Al are semiconductors.

Bridge Elements : Typical elements of II period.

NOMENCLATURE OF THE ELEMENT :

: SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, The names are derived by using roots for the three digits in the atomic number of the element and adding the ending -ium. The roots for the number are

Digit	Name	Abbreviation					
0	nil	n					
1	un	u					
2	bi	b					
3	tri	t					
4	quad	q					
5	pent	р					
6	hex	h					
7	sept	S					
8	oct	0					
9	enn	e					

Thus element with atomic number 109 will be named as **une** (**u** for 1, **n** for 0 and **e** for 9). Table **TEKO CLASSES, Director** summarises the names of the elements with atomic number above 100.

	Q.1	(A) Bonding behaviour	General Info ab g does not reflect the per r (B) Electronegativity		al (D) Neutron/ Proton ratio	Page 9 of 16 CLASSIFICATIONS
	Q.2	Choose the s-block ele (A) $1s^2$, $2s^2$, $2p^6$, $3s^2$, (C) $1s^2$, $2s^2$, $2p^6$, $3s^2$,	$3p^6, 3d^5, 4s^1$	 (B) 1s², 2s², 2p⁶, 3s² (D) all of the above 	, 3p ⁶ , 3d ¹⁰ , 4s ¹	ge 9 of 16 C
	Q.3	(A) The properties of t	riodic classification of el he elements are periodic c elements is less than th rgy of elements does cha by final electron with inc	c function of their atomic	c numbers. ts. creasing of atomic no. in a period ner transition elements.	(W.P.)
com	Q.4	Pick out the isoelectron	nic structure from the fol	llowing:		BHOPAL
www.tekoclasses.com		I. ⁺ CH ₃ (A) I and II	II. H ₃ O ⁺ (B) III and IV	III. NH ₃ (C) I and III	IV. CH_3^- (D) II, III and IV	
w.tekoc	Q.5	If there were 10 period comprise of.	ls in the periodic table th	nen how many elements	(D) II, III and IV would this period can maximum	1030 588 n
r	Q.6	If $(n + l)$ rule for energ according to increasing (a) K(19) (b) Fe	y is not followed, what g shell number (26) (c) Ga(31)	are the blocks of the foll (d) Sn(50)	owing elements if they are filled	000° 0 b
Package from website:	Q.7	nil uni bi	tri quad pent mbols for the elements]	hex sept oct with atomic number 101	the digits are written collectively 9 enn to 109.	Sir) PH: (0755)- 32 00
			Properties and	Periodic trends		Sir)
ad Study	Q.8	The size of the followin (A) $Mg^{2+} < Na^+ < F^-$ (C) Ar $< Mg < F^- < N$		he order: (B) F ⁻ < Ar < Na ⁺ < I (D) Na ⁺ < Ar < F ⁻ < I	0	R. K.
FREE Download Stu	Q.9	Element in which maxim (A) [Ne] 3s ² 3p ¹	mum ionization energy ((B) [Ne] 3s ² 3p ²	of following electronic co (C) [Ne] 3s ² 3p ³	nfiguration would be (D) [Ar] 3d ¹⁰ 4s ² 4p ³	KARIY
REE I	Q.10	The outermost electron (A) $ns^2 np^1$	nic configuration of mos (B) ns ² np ⁴	t electronegative element (C) ns ² np ⁵	t is: (D) ns ² np ⁶	JHAG R.
Ŧ	Q.11	The electron affinity of (A) O > S > Se	f the members of oxyger (B) S > O < Se	n of the periodic table, fo (C) O < S > Se	(D) Se > O > S	tor : SL
	Q.12	The process of requirin (A) $F \rightarrow F^-$	ng absorption of energy (B) $Cl \rightarrow Cl^{-}$	is (C) $O^- \rightarrow O^{2-}$	$(D) H \to H^-$	S, Direc
	Q.13	In the following which $(A) 1s^2, 2s^2 2p^5$	configuration of element (B) $1s^2$, $2s^2 2p^6$	t has maximum electrone (C) $1s^2$, $2s^2 2p^4$	gativity. (D) $1s^2$, $2s^2 2p^6$, $3s^2 3p^3$	CLASSES, Director : SUHAG R. KARIYA (S.

TEKO CL

	Q.14	SectorSect
	Q.15	tomic radii of flourine and neon in Å units are respectively given by Yes A) 0.72, 1.60 (B) 1.60, 1.60 (C) 0.72, 0.72 (D) 1.60, 0.72
	Q.16	SupportSupportSupport(A) Br^- (B) I(C) I^-(D) I^+(C) I^- (D) I^+(D) I^+(D) I^+ (D) I^+ (D) I^+ (D) I^-
	Q.17	Decreasing ionization potential for K, Ca & Ba is (A) $Ba > K > Ca$ (B) $Ca > Ba > K$ (C) $K > Ba > Ca$ (D) $K > Ca > Ba$
	Q.18	lement Hg has two oxidation states Hg ⁺¹ & Hg ⁺² . the right order of radii of these ions. (A) Hg ⁺¹ > Hg ⁺² (B) Hg ⁺² > Hg ⁺¹ (C) Hg ⁺¹ = Hg ⁺² (D) Hg ⁺² ≥ Hg ⁺¹ (B) Hg ⁺² > Hg ⁺¹ (C) Hg ⁺¹ = Hg ⁺² (D) Hg ⁺² ≥ Hg ⁺¹
Ш	Q.19	he ionization energy will be maximum for the process. A) $Ba \rightarrow Ba^{++}$ (B) $Be \rightarrow Be^{++}$ (C) $Cs \rightarrow Cs^{+}$ (D) $Li \rightarrow Li^{+}$ Why the first ionisation energy of carbon atom is greater than that of boron atom whereas, the reverse is B
www.tekoclasses.com	Q.20	ue for the second ionisation energy.
oclat	Q.21	on the Pauling's electronegativity scale, which element is next to F.
.tek	Q.22	$Ig^{2+}, O^{2-}, Na^+, F^-, N^{3-}$ (Arrange in decreasing order of ionic size)
MMA	Q.23	$Ig^{2+}, O^{2-}, Na^+, F^-, N^{3-}$ (Arrange in decreasing order of ionic size) Vhy Ca^{2+} has a smaller ionic radius than K^+ .
	Q.24	Which of the ions are paramagnetic Sr^{2+} , Fe^{3+} , Co^{2+} , S^{2-} , Pb^{2+}
ebsite	Q.25	Vhy do alkaline earth metals always form dipositive ions. §
rom w	Q.26	tate giving reasons which one have higher value : a) IE_1 of F or Cl (b) E A of O or O ⁻ (c) ionic radius of K ⁺ or Cl ⁻
kage fi	Q.27	xplain why a few elements such as Be $(+0.6)$, N $(+0.3)$ & He $(+0.6)$ have positive electron gain enthalpies b
1 Study Package from website:	Q.28	 while majority of elements do have negative values. rom among the elements, choose the following: Cl, Br, F, Al, C, Li, Cs & Xe.) The element with highest electron affinity. (ii) The element whose oxide is amphoteric. (iv) The element which has smallest radii. (v) The element whose atom has 8 electrons in the outermost shell.
FREE Download Stu	Q.29	(1) The element whose atom has 8 electrons in the outermost shell. (2) The element whose atom has 8 electrons in the outermost shell. (2) Atomic size (g) E N (a) Atomic size (g) E N (b) Ionic radii (h) At. mass (c) I E (i) Valance e ⁻ (f) Density (j) Metallic ch (g) Boiling point (k) Chemical reactivity (h) Boiling point (k) Chemical reactivity (h) Boiling point (h) At. mass (h) Density (j) Metallic ch (k) Chemical reactivity (k) Chemical reactivity (k) Boiling point (k) Chemical reactivity (k) Boiling point (k) Chemical reactivity (k) Chemical reactivity (k) Boiling point (k) Chemical reactivity (k) Chemical reactivity (k) Boiling point (k) Chemical reactivity (k) Chemical reactivity (k) Chemical reactivity (k) Boiling point (k) Chemical reactivity (k) Ato you predict about the relative covalent radii of K and F? (k) Ato you predict about the relative covalent radii of K and F? (k) Ober Na2(g) molecule exhibit metallic properties.
	Q.30	he IE do not follow a regular trend in II & III periods with increasing atomic number. Why?
	Q.31	rrange in decreasing order of atomic size : Na, Cs, Mg, Si, Cl.
	Q.32	The ionic compound KF, the K ⁺ and F ⁻ ions are found to have practically radii, about 1.34 Å each. So what do you predict about the relative covalent radii of K and F?
	Q.33	boes Na ₂ (g) molecule exhibit metallic properties.

	Q.34	Which will have a higher boiling point, Br_2 or ICl, & why?	S
	Q.35	Which bond in each pair is more polar	ION
	Q.33	(a) $P - Cl \text{ or } P - Br$ (b) $S - Cl \text{ or } S - O$ (c) $N - O$ or $N - F$	Page 11 of 16 CLASSIFICATIONS
	Q.36	Arrange noble gases, in the increasing order of b.p.	ASSI
		ENERGY BASED CALCULATIONS	16 CL
	Q.37	Calculate E.N. of flourine if $(r_F)_{covalent} = 0.72$ Å.	11 of
	Q.38	Calculate E.N. of chlorine atom on Pauling scale if I.E. of CF is 4eV & of E.A. of CI^+ is + 13.0 eV.	Page
	Q.39	Calculate the electronegativity of fluorine from the following data : $E_{H-H} = 104.2 \text{ kcal mol}^{-1}$ $E_{F-F} = 36.2 \text{ kcal mol}^{-1}$ $E_{H-F} = 134.6 \text{ kcal mol}^{-1}$ $X_{H} = 2.1$., (M.P.)
S.com	Q.40	Calculate the E.N. of Cl from the bond energy of ClF (61 KCal/mol). Given that bond energies of F_2 and Cl_2 are 38 and 58 KCal/mol respectively.	22 BHOPAL
www.tekoclasses.com	Q.41	The IE values of $Al_{(g)} = Al^+$ +e is 577.5 kJ mol ⁻¹ and ΔH for $Al_{(g)} = Al^{3+}$ +3e is 5140 kJ mol ⁻¹ . It second and third IE values are in the ratio 2:3. Calculate IE ₂ and IE ₃ .	f -
vw.tekc	Q.42	How many chlorine atoms will be ionised $Cl \longrightarrow Cl^+ + e^{-1}$ by the energy released from the process $Cl + e^{-1} \longrightarrow Cl^-$ for 6.02×10^{23} atoms (I.P. for $Cl = 1250$ kJ mol ⁻¹ and E.A. = 350 kJ mole ⁻¹)	98930 5888
	Q.43	For the gaseous reaction, $K + F \longrightarrow K^+ F^-$, ΔH was calculated to be 19 kcal under conditions where the cations and anions were prevented by electrostatic separation from combining with each other. The ionisation potential of K is 4.3 eV. What is the electron affinity of F?	• •
Package from website:	Q.44 Q.45	The ionisation potentials of atoms A and B are 400 and 300 kcal mol ⁻¹ respectively. The electron affinities of these atoms are 80.0 and 85.0 k cal mol ⁻¹ respectively. Prove that which of the atoms has higher electronegativity. The As-Cl bond distance in AsCl ₃ is 2.20 Å. Estimate the SBCR (single bond covalent radius) of As.	: (0755)-
y Pa	0.46	(Assume EN of both to be same and radius of $Cl = 0.99$ Å.) The Pt-Cl distance has been found to be 2.32 Å in several crystalline compounds. If this value applies to	. Sir)
Stud	Q.40	both of the compounds shown in figure. What is Cl - Cl distance in (a) and (b)	2
bad		NH ₃ NH ₃	ra (s
0 wnlo	Q.46	(a) Ck Pt Cl (b) Ck Pt NH_3	KARIY
EE D		NH ₃ Cl	G R.
FRI		Effective nuclear charge and screening	SUHA
	Q.47	Calculate the screening constant of Ca. (atomic number 20)	or : \$
	Q.48	Calculate the effective nuclear charge on- (i) 4s valency e ⁻ in Bromine atom. and (ii) 3d electron in Bromine atom.	, Director : SUHAG R. KARIYA (S.
	Q.49	I.P. of Be^{+x} is found to be 217.6 electron volt. What is the value of x.	SSES
	Q.50	Calculate Z_{eff} from slater's rule & from Bohr's model. Take I.E. of K from graph. IE of K is 4.3 eV.	TEKO CLASSES,

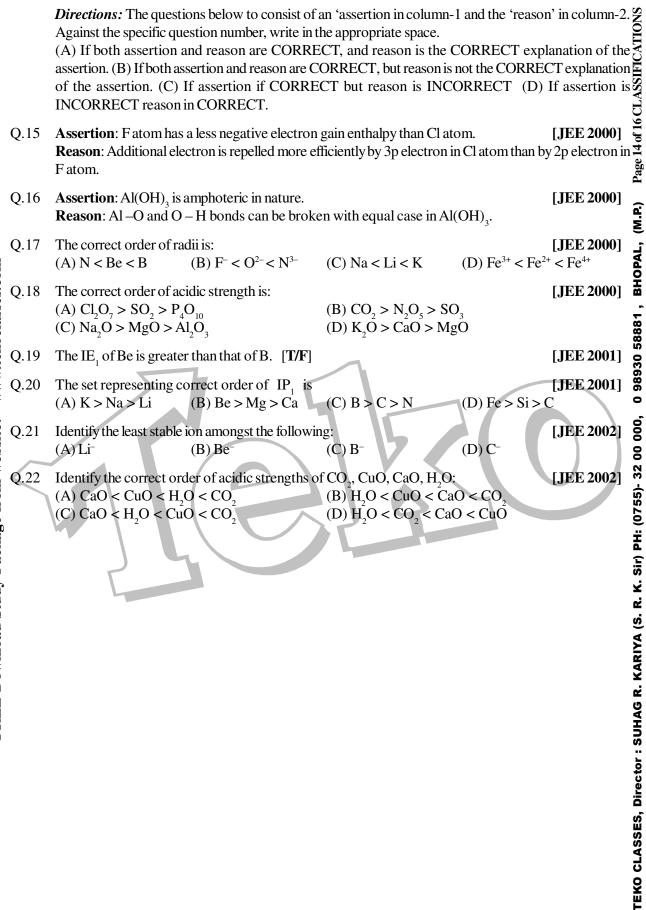
FRFF. Download Study Package from website: www.tekoclasses.com

- Q.51 Arrange following oxides in increasing acidic nature
- Q.52 Which oxide is more basic, MgO or BaO? Why?
- Q.53
- Miscellaneous Properties
 Source

 Arrange following oxides in increasing acidic nature
 Li2O, BeO, B2O3

 Which oxide is more basic, MgO or BaO? Why?
 Which oxide is more basic, MgO or BaO? Why?

 The basic nature of hydroxides of group 13 (III-A) decreases progressively down the group. Comment.
 Based on location in P.T., which of the following would you expect to be acidic & which basic.


 (a) CsOH
 (b) IOH
 (c) Sr(OH)2
 (d) SeO3(OH)2
 (e) FrOH
 (f) BrOH

 Q.54

EXERCISE # II

		Question No. 1 and 2 are based on the following information.
com		Question No. 1 and 2 are based on the following information.Image: Second state control in the following information is the second state control in the following information as:Image: Second state control in the following information as:Second state contro
www.tekoclasses.com	Q.1	Comment which of the following option represent the correct order of true (T) & false (F) statement.size of P < size of Q
bsite:	Q.2	Order of IE_1 values among the following is A) $P > R > S > Q$ (B) $P < R < S < Q$ (C) $R > S > P > Q$ (D) $P > S > R > Q$
Download Study Package from website:	\leq	 <i>following question</i> a statement S and an explanation E is given. Choose the correct answers from the codes A, B, C, D given for given question. A) S is correct but E is wrong. B) S is wrong but E is correct. C) Both S and E are correct and E is correct explanation of S. D) Both S and E are correct but E is not correct explanation of S. : Lithium is a better reducing agent than Cs. : Sublimation energy and Ionisation energy of lithium is less than that of Cs. : The first ionization energy of Be is greater than that of B. : 2p orbital is lower in energy than 2s. Cond distance C–F in (CF₄) & Si–F in (SiF₄) are respective 1.33Å & 1.54 Å. C–Si bond is 1.87 Å.
Study I	Q.3	: Lithium is a better reducing agent than Cs.
load S	Q.4	: The first ionization energy of Be is greater than that of B. S : 2p orbital is lower in energy than 2s. S
Dow	Q.5	
FREE		A) 0.64 Å (B) $\frac{1.33+1.54+1.8}{3}$ Å (C) 0.5 Å (D) $\frac{1.54}{2}$ Å
	Q.6	We elements A & B are such that B. E. of A–A, B–B & A–B are respectively 81 Kcal / mole, 4 Kcal / mole, 76 Kcal / mole & if electronegativity of B is 2.4 then the electronegativity of A may be pproximately (C) 1.99 (D) 3.0
		A) 2.81 (B) 1.8 (C) 1.99 (D) 3.0 Sig

	0.1		EXERCI			SNO
	Q.1	Moving from right to le (A) increased	(B) decreased	(C) remains constant	(D) none of the	[JEE 1995] UIE
	Q.2	The increasing order of (A) C, N, Si, P	electronegativity in the fo (B) N, Si, C, P	ollowing elements: (C) Si, P, C, N	(D) P, Si, N, C	[JEE 1995] SNOLLY STATES (JEE 1995] SNOLLY STATES (JEE 1995) SNOLLY STA
	Q.3	One element has atomi statement for that eleme (A) Hight value of IE	-	onic configuration is 1s ² (B) Transition element	² , 2s ² 2p ⁶ , 3s ² 3p	
		(C) Isotone with $_{18}$ Ar ³⁸		(D) None		[JEE 1995]
	Q.4	The number of paired el (A) 6	lectrons in oxygen is: (B) 16	(C) 8	(D) 32	[JEE 1995] a.
ses.com	Q.5	Fluorine is the most read (A) small size (C) large size	ctive among all the halog	gens, becuase of its: (B) low dissociation er (D) high dissociation e		
www.tekoclasses.com	Q.6	The decreasing size of (A) $K^+ > Ca^{+2} > S^{-2} > (C) Ca^{+2} > K^+ > Cl^- > S^{-2} > Cl^-$	Cl⁻	by the order: (B) $K^+ > Ca^{+2} > Cl^- >$ (D) $S^{-2} > Cl^- > K^+ > Cl^- > Cl^- > K^+ > Cl^$		[REE 1995] 888 889 889 889 889 889 889 889 889 889
NMM	Q.7	Which of the following (A) CO	oxide is neutral? (B) SnO ₂	(C) ZnO	(D) SiO ₂	[<u></u> 0
ebsite:	Q.8	Which of the following $(A) Mg^{2+}$	has the maximum numbe (B) Ti ³⁺	er of unpaired electrons (C) V ³⁺	(D) Fe ²⁺	[JEE 1996] 8
Package from website:	Q.9	order		order of decreasing aci	d strength. Iden	tify the correct F [JEE 1996]
kage		CIOH(I) (A) I > II > III	BrOH(II) (B) II > I > III	IOH(III) (C) III > II > I	(D) I > III > II	[JEE 1996] 'g Ha
dy	Q.10	The incorrect statement (A) IE_1 of Al is less than (C) IE_1 of Na is less that	n IE ₁ of Mg	(B) IE_2 of Mg is greate (D) IE_3 of Mg is greate		[JEE 1997] נוס צי צי
FREE Download Stu	Q.11	(B) the second ionisation(C) the first ionisation p	otential of Al is less that on potential of Mg is grea otential of Na is less tha	the first ionisation poter ater that the second ionis n the first ionisation pote er than the third ionisation	sation potential of Mg	[JEE 1997] ⁽¹⁾ of Na [REE 1997] ⁽¹⁾ [REE 1997] ⁽¹⁾
FRI	Q.12	Which of the following a (A) Be(OH) ₂	are amphoteric? (B) Sr(OH) ₂	(C) Ca(OH) ₂	$(D) Al(OH)_3$	
	Q.13	Li+, Mg ²⁺ , K+, Al ³⁺ (Arra	ange in increasing order	of radii)		[JEE 1997]
	Q.14	Ionic radii of: (A) $Ti^{4+} < Mn^{7+}$	(B) ${}^{35}Cl^- > {}^{37}Cl^-$	$(C) K^{+} > Cl^{-}$	(D) $P^{3+} > P^{5+}$	[JEE 1997] [JEE 1999] Salary Constraints (JEE 1999) [JEE 1999] Salary Constraints (JEE 1999) [JEE 1999] Salary Constraints (JEE 1999) [JEE 1997] [JEE 1997
						TEKO

FREE Download Study Package from website: www.tekoclasses.com

							E <mark>R K</mark> . LISE # 1					
	Q.1	D		Q.2	С		Q.3	D		Q.4	D	
	Q.5	72		Q.6	(a) d b	lock, (ł	o) d bloc	k, (c) p	block, ((e) f blo	ck	
	Q.7	101	102	103	104	105	106	107	108	109		
		Unu	Unb	Unt	Unq	Unp	Unh	Uns	Uno	Une		
	Q.8	А		Q.9	С		Q.10	С		Q.11	С	
	Q.12	С		Q.13	А		Q.14	С		Q.15	А	
	Q.16	С		Q.17	В		Q.18	А		Q.19	В	
	Q.20	Zeff &	half fille	d config			Q.21	0				
	Q.22	$N^{3-} > 0$	$O^{2-} > F^{-}$	> Na ⁺ :	> Mg ²⁺		Q.23	Isolele	ctronic (Ca+2(high	her)	
	Q.24	$\mathrm{Fe}^{_{3+}}$,	CO ²⁺	Q.25	differe	nce in 1	$E_{1} \& 1E$	$_2$ is less t	than 10e	ev.		
	Q.26	(a) F	(b) O	(c) Cl	-		Q.27	half fill	ed and fi	ully filled	d orbitals	5
	Q.28	(i) Cl	(ii) Cs ((iii) Al (iv)F (v) Xe						
	Q.29	Increa	ses \rightarrow	a, b, d,	, h , j , k	, Dec	crease -	→ c,e	, f , g , S	Same →	→ i	
	Q.30	half fill	ed & full	y filled c	orbitals	5	Q.31	Cs > N	la > Mg	;>Si>	Cl	
	Q.32	$r_k > 1.2$	34Å > r	_F Q.33	No		Q.34	ICl				
	Q.35	(a) P-	-Cl (l	o) S-O	, (C) N	I–F	Q.36	He < 1	Ne < Ar	< Kr <	Xe < Ri	1
\square	Q.37	4, 4.3		Q.38	3.03 (H	Pauling)	Q.39	3.8752	2	Q.40	3.2	
	Q.41	$IE_2 = 1$.825 kJ/		U		mol	Q.42	1.686	× 10^{23} ɛ	tom	
	Q.43							4				
	Q.45	1.21 Å		Q.46	4.64 Å	x; b = 3	.28 Å	Q.47	17.15	Q.48	(i) 7.6	(ii) 13.85
	Q.49	Be ⁺³		Q.50	2.2, (S	later's r	ule) 2.25	5 (Bohr'	's model)		
	Q.51	Li ₂ O	<	BeO		<	B_2O_3					
		basic		•			acidic					
	-			-								
	Q.16 C Q.17 B Q.18 A Q.19 B Q.20 Zeff & half filled config. Q.21 O Q.22 $N^{3-} > O^{2-} > F^- > Na^+ > Mg^{2+}$ Q.23 Isolelectronic Ca ⁺² (higher) Q.24 Fe ³⁺ , CO ²⁺ Q.25 difference in 1E ₁ & 1E ₂ is less than 10ev. Q.26 (a) F (b) O (c) Cl ⁻ Q.27 half filled and fully filled orbitals Q.28 (i) Cl (ii) Cs (iii) Al (iv) F (v) Xe Q.29 Increases $\rightarrow a, b, d, h, j, k$, Decrease $\rightarrow c, e, f, g, Same \rightarrow i Q.30 half filled & fully filled orbitals Q.31 Cs > Na > Mg > Si > Cl Q.35 (a) P-Cl (b) S-O, (C) N-F Q.36 He < Ne < Ar < Kr < Xe < Rn Q.37 4, 4.3 Q.38 3.03 (Pauling) Q.39 3.8752 Q.40 3.2 Q.41 IE2 = 1825 kJ/mole, IE3 = 2737.5 kJ/mol Q.42 1.686 × 1023 atom Q.43 3.476 eV Q.44 EN1 > EN2 Q.45 1.21 Å Q.46 4.64 Å; b = 3.28 Å Q.47 17.15 Q.48 (i) 7.6 (ii) 13.85 Q.49 Be+3 Q.50 $											
					<u>E.</u>	<u>XERC</u>	<u>ISE #</u>	<u>11</u>				
	Q.1	В	Q.2	А	Q.3	А	Q.4	С	Q.5	С	Q.6	A, C
					<u>E2</u>	<u>KERCI</u>	<u>SE</u> # 1	<u>III</u>				
	Q.1	А			Q.2	С		Q.3	С		Q.4	А
	-	AB			-			Q.7	А		Q.8	D
	-				-			_			-	
	-		$Li^+ < M_2$	$g^{2+} < K^{+}$	-			-			-	
	-				-			Q.19	True		Q.20	В
	Q.21	А			Q.22	А						

GROUP	I A			IV V VI A B A B A F					A	B	VIII			0				
1.		H 1	-	s are	Constant in		-0.5		- Infe		.0			H 1		n h		He 2
2.	Li 3		Be 4	- 1	a: 14	B 5	19	C 6		N 7		0 8		F 9				Ne 10
3.	Na 11		Mg 12	1124	1.0	AI 13	1-20	Si 14	10-	P 15	14	S 16	0.04	Cl 17	() () ()	4.7		Ar 18
4.	K 19	Cu 29	Ca 20	Zn 30			Ti 22	Ge 32	V 23	As 33	Cr 24	Se 34	Mn 25	Br 35	Fe 26	Co 27	Ni 28	Kr 36
5.	Rb 37	Ag 47	Sr 38	Cd 48	Y 39	In 49	Zr 40	Sn 50	Nb 41	Sb 51	Mo 42	Te 52	Tc 43	I 53	Ru 44	Rh 45	Pd 46	Xe 54
6.	Cs 55	Au 79	Ba 56	Hg 80		T1 81	Hf 72	Pb 82	Та 73	Bi 83	W 74	Po 84	Re 75	At 85	Os 76	Ir 77	Pt 78	Rn 86
id alatan dr. park hijeme zenje	Fr 87		88				Ku(R 104		Ha 105	ABOO ABOO	Unh(S	g) Uuh	Uns(H 107	3h)	(Hs)	Une (Mt) 109	110	Uuo
alist e al	teletin el o pa	Uuu 111		Uub 112	n en officie N ation al de		ed in	Uuq 114	agricos To ave	y ny an		116		sett m		la m	in de Trade	118

*LANTHANIDE	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
SEFJES	58	59	60	61	62	63	64	65	66	67	68	69	70	71
†ACTINIDE	Th	Pa	U	N p	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
SERIES	90	91	92	93	94	95	96	97	98	99	100	101	102	103

Fig. 1.3 Modern Mendeleeff's Periodic Table